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Fast and robust object recognition of cluttered scenes presents two main chal-
lenges: (1) the large number of features to process requires high computation-
al power, and (2) false matches from background clutter can degrade recogni-
tion accuracy. Previously, saliency based bottom-up visual attention [1,2]
increased recognition speed by confining the recognition processing only to the
salient regions. But these schemes had an inherent problem: the accuracy of the
attention itself. If attention is paid to the false region, which is common when
saliency cannot distinguish between clutter and object, recognition accuracy is
degraded. In order to improve the attention accuracy, we previously reported an
algorithm, the Unified Visual Attention Model (UVAM) [3], which incorporates
the familiarity map on top of the saliency map for the search of attentive points.
It can cross-check the accuracy of attention deployment by combining top-down
attention, searching for “meaningful objects”, and bottom-up attention, just
looking for conspicuous points. This paper presents a heterogeneous many-core
(note: we use the term “many-core” instead of “multi-core” to emphasize the
large number of cores) processor that realizes the UVAM algorithm to achieve
fast and robust object recognition of cluttered video sequences.

In the attention-recognition loop of the UVAM, shown in Fig. 18.4.1, attention
and recognition processes are iteratively optimized through the back-and-forth
feedback between attention and recognition. During the feedback attention
process, familiarity evaluation is performed by neuro-fuzzy inference using
semantic features of objects such as size, orientation, and motion as clues. As a
result, computationally expensive Scale Invariant Feature Transform (SIFT) [4]
object recognition, consisting of feature detection, feature description and data-
base matching, is performed only on regions-of-interest (ROI) selected by the
attention feedback process.

Our processor exploits 3 key features to realize UVAM-based object recognition.
First, the analog-digital mixed-mode intelligent inference engine (IIE) accurately
distinguishes target objects from clutter using the adaptive neuro-fuzzy infer-
ence system (ANFIS) [5] to improve the accuracy of the attention feedback.
Second, 4 feature extraction clusters (FEC) comprised of 4 SIMD vector-pro-
cessing elements (VPE) and 32 MIMD scalar-processing elements (SPE) with
hierarchical task management accelerate feature detection and generation
stages. Third, per-frame power-mode control based on workload prediction by
the IIE minimizes power consumption.

The overall block diagram of the heterogeneous many-core processor is shown
in Fig. 18.4.2. A total of 51 IPs are connected by a hierarchical star NoC [6] and
organized into 2 layers: the cognitive control layer (CCL), which performs glob-
al attention and power-management functions, and the parallel-processing layer
(PPL), which performs feature extraction and matching. The CCL consists of the
IIE, a RISC host processor, the power-mode controller (PMC), and several fixed-
function units for accelerating feed-forward visual attention. The PPL consists of
4 FECs for feature detection and description, and 1 feature-matching processor
(FMP) for database matching.

Each FEC consists of 1 SIMD VPE for exploiting data-level parallelism (DLP) of
the feature-detection task, and 8 SPEs for exploiting task-level parallelism (TLP)
of the feature-description task. The VPE is a 20-way 8b vector processor opti-
mized for image windows between 32×32 pixels and 40×40 pixels. A 20B-wide,
byte-addressable 40kB local memory, and 1kB of coefficient memory can be
directly accessed by a register-programmed convolution controller to achieve
18.25MAC/cycle or over 91% utilization of the vector ALU during a Gaussian fil-
ter operation. The SPE is a 16b scalar processor for accelerating the control-
intensive operations of the feature-description stage. Its 5-stage pipeline is capa-
ble of memory load and ALU execution in a single instruction and has hardware
support for sine, co-sine, arc-tangent, square-root, division and modulo opera-
tions. As a result, 1 feature-detection task takes 180µs on the VPE, and 1 fea-
ture-description task takes 161µs on the SPE.

Figure 18.4.3 shows the task distribution between 4 VPEs and 32 SPEs. The
global task-management unit (GTMU) in the CCL and 4 local task-management
units (LTMU) in each FEC perform hierarchical task management of the VPEs
and SPEs to achieve high utilization rate. The GTMU and LTMUs feature 16 entry
command queues for buffering incoming task requests, which are processed at
a rate of 1 per 20 cycles to support low-latency fine-grained task management.
Moreover, the LTMUs enable SPE sharing between neighboring FECs to alleviate
under-utilization or saturation of the SPEs. Thanks to SPE sharing, the average
throughput of the 4 FECs is increased by 22% to 460 ROI per frame at 30fps.

The IIE, shown in Fig. 18.4.4, consists of a 5-stage current-mode analog data-
path for neuro-fuzzy inference, and a digital controller for loading inputs and
parameters. The high and low boundaries of the parameterized Gaussian mem-
bership function’s transfer curve can be controlled by Vref1 and Vref2 as shown in
the waveforms. The slope of the Gaussian function is controlled by varying the
gm of M1 through M4. A 4kB internal cache reduces memory access overhead
by 86%, thereby improving inference throughput by 21%. As a result, the IIE
achieves 1M fuzzy logic inferences per second (FLIPS), and area and power con-
sumption of the analog datapath are 0.176mm2 and 1.2mW, or 54% and 15%,
respectively, compared to an equivalent digital implementation.

Figure 18.4.5 shows the perturbation-learning [7] scheme employed by the IIE
to achieve real-time adaptation. The evaluation result, E(wij

n) of the outer large
circle, and the perturbed results, E(wij

n+δ) of the inner 9 iterative calculation
paths, are used to calculate the antecedent parameters wij

n+1 for the next epoch,
where wij

n are the current antecedent parameters, xt is the input, y(xt,wij
n) is the

familiarity output, yd is the desired output, and δ denotes perturbation. One iter-
ation, or epoch, of perturbation learning takes 3.5µs and learning with <5% error
is achieved in just 20 epochs, or 70µs. 

Figure 18.4.6 outlines the power-management scheme and its measurement
results. The PMC performs per-frame power-mode control on the voltage and
frequency island (VFI) containing the PPL, which consumes 78% of the chip’s
peak power. Workload prediction with an average error rate of 6% is performed
by the IIE using the workload of the previous frame and the bottom-up saliency
map as inputs. As a result, the average power consumption of the chip is
reduced by 48%, compared to when only saliency-based attention is used with-
out PMC.

The chip (Fig. 18.4.7) occupies 50mm2 in a 0.13µm 8 metal CMOS process and
contains 2.93M equivalent gates and 626kB of SRAM. Peak performance is
228GOPS while peak power efficiency is 545 GOPS/W with the PPL throttled
down to 50MHz/0.65V. 96% recognition accuracy and 8.5mJ/frame energy effi-
ciency are achieved on a 30fps VGA video stream of a cluttered scene, showing
that the UVAM based heterogeneous many-core chip enables fast and robust
object recognition in real-life scenarios.
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Figure 18.4.1: Attention-recognition loop of the unified visual attention map. Figure 18.4.2: Block diagram of the heterogeneous multi-core processor.

Figure 18.4.3: Hierarchical task management of the VPEs and SPEs.

Figure 18.4.5: Perturbation learning in the intelligent inference engine.
Figure 18.4.6: Per-frame power-mode management based on intelligent work-
load prediction.

Figure 18.4.4: Mixed-mode intelligent inference engine and parameterized
Gaussian membership function. 18



•  2010 IEEE International Solid-State Circuits Conference 978-1-4244-6034-2/10/$26.00 ©2010 IEEE

ISSCC 2010 PAPER CONTINUATIONS

Figure 18.4.7: Chip micrograph and summary.




